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Abstract - -  The problem of the oscil latory thermocapi l lary convection f low inside a NaNO3 float zone which is suspended 
between a pair of  coaxial disks with prescribed t ime-dependent temperature profiles and bounded by a cylindrical free surface, has 
been investigated. The system of governing equations corresponding to a three-dimensional transient model was directly solved 
by employing a finite control volume method, ful ly-implicit  in t ime, and a staggered spatial mesh in cylindrical coordinates. It has 
been clearly shown that for a sufficiently low temperature difference between the disks, the f low consists of a steady and perfectly 
axisymmetr ical  toroidal structure with a purely axial movement  of the fluid on the free surface and the vor tex center located near 
that surface. Beyond the critical Marangoni number, M a ~  ~ 12 500, a transit ion from the axisymmetr ical  to the three-dimensional 
oscil latory state occurs. Under the effects of the t ime-dependent thermal disturbances on the free surface, the entire veloci ty and 
temperature fields rotate around the main axis fol lowing the second mode, i.e. the symmetrical mode of instabil ity. A complete 
description of the f low structure and its dynamical behavior as well as a comparison with previous numerical and experimental  data 
is given. The phenomenon of hysteresis has also been studied. It has been observed that there is a certain range of the Marangoni 
number where both the axisymmetr ical  and the oscil latory states may exist depending on whether the zone is heated up or cooled 
down. It has been found that the second critical Marangoni number i.e. the one corresponding to the reverse transit ion from the 
oscil latory to the axisymmetr ical state, depends strongly on the temperature time-rate at which the zone is cooled. ~ 1999 Editions 
scientifiques et m~dicales Elsevier SAS. 
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R~sum~ Simulation num~rique de I'~coulement thermocapillaire oscillatoire dans une zone liquide cylindrique. On a 
~tudi~ le probl~me de I '~coulement thermocapil laire oscil latoire ~ I ' int~rieur d'un pont l iquide cyl indrique de NaNO3, suspendu 
entre deux disques coaxiaux dont les temperatures varient en fonction du temps. Le syst~me des ~quations de conservation, 
correspondant ~ un module tr idimensionnel en r~gime transitoire, a ~t~ r~solu en uti l isant la m~thode des volumes finis. Cette 
m~thode utilise un schema totalement implicite dans le temps et un maillage d~cal~ en coordonn~es cylindriques. II a ~t~ clairement 
montr~ que, pour un ~cart de temperature relat ivement faible entre les deux disques, I '~coulement est stationnaire et parfaitement 
axisym~trique, avec une structure unicellulaire dont le centre est Iocalis~ pros de la surface libre. Au-del~ du nombre de Marangoni 
critique, MaWr ~ 12 500, la transit ion axisym~tr ique-osci l latoire a lieu. Sous I'effet de perturbations thermiques transitoires qui 
se propagent sur la surface libre, les champs thermique et hydrodynamique tournent autour de I'axe principal de la zone, en 
suivant le 2 e mode ou le mode sym~trique de I' instabilit~. Une description complete de la structure de I '~coulement et de son 
comportement dynamique, ainsi qu'une comparaison avec les donn~es exp~rimentales, ont ~t~ ~tablies. Le ph~nom~ne d'hyst~r~sis 
a ~t~ ~galement ~tudi~. II a ~t~ observ~ que, pour un certain domaine de valeurs du param~tre M a ,  les ~tats axisym~trique et 
oscil latoire peuvent exister, selon le type de transfert de chaleur, chauffage ou refroidissement, de la zone. II a ~t~ ~galement 
montr~ que le deuxi~me nombre de Marangoni crit ique correspondant ~ la transit ion inverse (osci l latoire-axisym~trique) d~pend 
du taux temporel de refroidissement de la zone. ~) 1999 Editions scientifiques et m~dicales Elsevier SAS. 

instabilit~ / ~coulement thermocapillaire / convection / pont-liquide / micro-gravit~ / simulation num~rique 

Nomenclature H 

A aspec t  rat io,  A = Ro/H k 
Ma 

C~ specific hea t  of  t he  fluid . . . . . . . . . . .  J .kg  -1  .K - 1  

P 
* Cor respondence  and  repr ints .  

he ight  of  the  float zone . . . . . . . . . . . .  
t h e r m a l  conduc t iv i ty  of the  f l u i d . . .  

Marangon i  mlmber ,  

Ma = IOa/OT I A T H / t t a  
dimens ion less  pressure  

m 

W . m - l . K - 1  
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Pr Prandtl number, Pr = Cp #/k  
R,O,Z dimensionless radial, tangential and 

axial coordinates 
R0 radius of the zone . . . . . . . . . . . . . . . .  
t,T dimensional and dimensionless tem- 

perature . . . . . . . . . . . . . . . . . . . . . . . . .  
V~. dimensionless radial velocity compo- 

nent 
17o dimensionless tangential velocity 

component 
Vz dimensionless axial velocity compo- 

nent 

Greek symbols 

OL 

p 
l] 

p 
O" 

7- 

7-* 

i n  

K 

thermal diffusivity . . . . . . . . . . . . . . . .  m2.s 1 
thermal expansion coefficient . . . . . .  K -1 
dynamic viscosity . . . . . . . . . . . . . . . . .  kg.m - 5.s- 1 
kinematic viscosity . . . . . . . . . . . . . . . .  m2.s -1 
density . . . . . . . . . . . . . . . . . . . . . . . . . .  kg.m -3 
surface tension of liquid-vapor inter- 
face . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  N-m 1 
dimensional time . . . . . . . . . . . . . . . . .  s 
dimensionless time 

1. I N T R O D U C T I O N  

The float zone technique has become one of the most 
popular  means to produce highly homogeneous and 
large crystals  in space. Even under such strongly reduced 
gravi ty conditions, one must  take into considerat ion 
the existence of the thermocapi l lary  convection or the 
Marangoni  flow which influences the entire domain. Its 
effects on the internal thermal  field of a float zone have 
received considerable a t tent ion from many researchers, 
both  exper imental ly  (see, for example,  [1 15]). A par t ia l  
review of previous works in this area has been published 
by Wilcox [1@ 

Some observations performed in space and on earth- 
s imulated-micro-gravi ty  condit ions have clearly shown 
tha t  the s teady axisymmetr iea l  thermocapi l lary  flow 
may become oscil latory and non-symmetr ical  when its 
intensity (which is propor t ional  to the t empera tu re  
gradient  imposed along the free surface of the zone) 
is sufficiently vigorous. In fact, Preisser, Schwabe 
and Sharmann [3] have observed the oscil latory flow 
structure  inside a t iny NaNOa float zone of ~ 6 mm 
in diameter  and ~ 4 mm in height. Two different 
osci l latory modes were noticed: the first mode or 
the non-symmetr ical  mode which was detected for 
Ro/H <<. 0.77 and the second mode or the symmetr ical  
mode which exists for 1.43 ~> Ro/H >~ 0.71. For the 
first mode, the  axis of the reeirculation cell is inclined 
with respect to the  zone centerline, and the whole 
field rota tes  around the lat ter .  Several explanations for 
the instabi l i ty  mechanism have been proposed. Chun 
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[2] and Preisser et al. [3], in part icular ,  believed tha t  
the convection flow becomes unstable (i.e. oscillatory) 
when tile Marangoni  number which characterizes the 
intensity of the thermocapi l lary  flow, exceeds a certain 
critical value Macr (Matt ~ I04 for NaNO3). The 
critical Marangoni  number likely remains constant  
for a given mater ia l  in space and on ear th and 
seems to be propor t ional  to Pr °7~. On the other 
hand, Vargas et al. [17] and Kamotanie t  al. [18] 
have s t ipula ted tha t  the flexibility of the free surface 
itself may const i tute a major  factor in the generation 
of the oscillations. Ostrach et al. [4] have proposed 
an interesting physical model according to which the 
axisymmetr ica l /osci l la tory  t ransi t ion is caused by a 
delay in the t ime-response between the thermocapi l lary  
flow near the surface and the return flow coming from 
the interior bulk fluid. Kamotan i  and Lee [19], from 
observations performed on Silicone oils, have suggested 
tha t  the existence of a very thin thermal  boundary- layer  
beneath  the free surface may be a possible cause of 
the oscillations. The instabi l i ty  of the buoyant layers 
inside the float zone has been s tudied by Hu [6]. 
Also, according to Napol i tano and Monti  [20], the 
axisymmetr ica l /osc i l la tory  t ransi t ion occurs when the 
dynamic Weber  number Wea defined as the rat io 
of the dynamic pressure p V2/2 and the rigidity due to 
the surface tension c / H  at the free surface reaches 
a certain critical limit. They have proposed a new 
dimensionless parameter  defined as s = (2Wed) 1/2 to 
characterize the onset of oscillations. 

The experimental  evidence of the existence of oscilla- 
tions have ini t ia ted several analyt ica l /numerica l  studies. 
Rupp et al. [21] simulated numerically an oscillatory 
flow within a half-zone of liquid GaAs. The agree- 
ment between their  numerical results and experimental  
da t a  can be qualified as acceptable,  al though relatively 
impor tant  errors were observed on the oscillations fre- 
quencies. Kazarinoff and Wilkowski [7, 22, 23] have 
numerically modeled a full-zone of Silicon, considering 
a deformable free surface but  conserving, however, the 
axisymmetr ic  character  of the flow field. They have also 
investigated the oscil latory behavior of the flow. Direct 
numerical  s imulation has also been employed by Lev- 
ens tam and Amberg  [24] to s tudy the s tabi l i ty  of the 
flow in a half-zone of a small P rand t l  number fluid, 
Pr = 0.01. The axisymmetr ic  ther inocapi l lary flow has 
been found to be unstable  and turns into a s teady 
non-axisymmetr ic  s ta te  with azimuthal  wave number  
equal to 2, for a zone aspect  rat io of 1. Wi th  fur- 
ther  increase of the thermocapi l lary  Reynolds number,  
this s teady three-dimensional  solution loses its s tabi l i ty  
and becomes oscillatory. Both instabili t ies are believed 
to be hydrodynamic  in nature.  Recently, Savino and 
Monti  [25] have s tudied the problem of the oscil latory 
Marangoni  convection in a Silicone-oil liquid bridge 
(Pr = 30 and Pr = 74). They have shown tha t  imme- 
diately after the onset of instability, the oscillatory flow 
can be described by a s tanding wave and a pulsat ing 
tempera ture  distr ibut ion.  When  the oscil latory distm-- 
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bances become large, the azimuthal velocity causes the 
rotation of "temperature-spots" along the free surface 
so that  the time dependent temperature and velocity 
fields can be properly described by the dynamic model 
of an azimuthally traveling wave. 

In spite of a considerable number of publications 
dealing with this problem, the physical mechanism that  
governs the onset of the time-dependent flow as well as 
the comprehensive picture of the flow organization re- 
main, unfortunately, poorly understood. In the present 
paper, the problem of the hydrodynamic instabilities 
of the Marangoni flow inside a cylindrical float zone 
has been investigated by direct numerical simulation 
of a full three-dimensional and time-dependent model, 
considering NaNO3 (Pr = 8.9) as the fluid and the 
micro-gravitational conditions. The objective of this 
work is not only to determine the critical Marangoni 
number, but also to provide complete information re- 
garding the organization of the unstable flow structure 
as well as the effects due to the heating ramping-rate. 
We have also at tempted to investigate the hysteresis 
phenomenon corresponding to the cooling process of 
the liquid zone, a phenomenon that  has been observed 
experimentally. 

2. M A T H E M A T I C A L  F O R M U L A T I O N  

2.1. Govern ing  equa t ions  

We consider a cylindrical half-zone of a molten liquid 
which is held, under surface tension effects and micro- 
gravity conditions, between a pair of coaxial, parallel 
disks of radius R0 and separated from each other by 
the distance H (figure 1). Both the disks are stationary 
and have uniform temperatures tl and t2 (tl > t2). In 
the present study, we will assign t2 = tM where tM 
is the melting temperature of the material considered, 
while the temperature tl = f(T) varies as a function 
of time. For the proper mathematical  formulation of 
the problem, the fluid is considered to be Newtonian 
and incompressible with constant properties evaluated 
at tM, except tbr the surface tension which is acting 
on the zone free surface and assumed to be a linearly 
decreasing function of temperature: 

= ~M -- 3' (t -- tM) (I) 

The constant ~/ is assumed to be positive which 
means that  the fluid particles will generally pull away 
from a high temperature spot on the free surface. The 
compression work, as well as the viscous dissipation, 
are considered to be negligible in the energy equation. 
Furthermore, the free surface of the zone is assumed 
thermally insulated and radially non-deformable, but  
can allow the transfer of heat and momentum in both 

Disk I 

t l -  f{~) 

R <  

Disk 2 

t2-- t M 

Z 

:~ H [ Free Surface 

Figure 1. Geometry conf igurat ion of the thermocapi l lary f low. 

the axial and circumferential directions. The assumption 
of a "thermally insulated" free surface was based on the 
fact that  in real p - g  platforms, the float zone is 
generally well isolated from its surroundings, in order to 
ensure the uniformity of thermal boundary conditions as 
well as to keep the input power at a reasonably low level 
[26]. With regard to the assumption of the perfectly 
cylindrical shape of that  surface, it is motivated by 
the fact that  for the cases considered in this study, 
the capillary number, defined as Ca = ~A T/CYM, is very 
small (~ 10 -a) indicating obviously the dominant effects 
of the surface tension (see in particular, Savino and 
Monti [25]). Furthermore, numerical simulations taking 
into account the deformability of the free surface have 
eloquently shown that  under micro-gravity conditions 
(i.e. 10 .4 g), the maximum radial deformation of that  
surface does not exceed, in any case, 0.08 % of the zone 
nominal radius [27]. 

The following quantities H, (~ A T/p),  (H #/~/A T), 
p ( y A T / # )  2, and AT = t l s t e p -  t2 have been respec- 
tively adopted as the reference length, velocity, time, 
pressure and temperature difference. Note that  ti step is 
the hot disk temperature corresponding to each of the 
heating steps considered, as shown later in figure 2. A 
dimensionless variable is then defined as the ratio of the 
quantity considered with respect to the corresponding 
reference quantity, except for the dimensionless temper- 
ature which is defined as follows: 

T - t - t2 (2)  
AT 

Under the above conditions, the dimensionless 
governing equations written in the cylindrical coor- 
dinates system (R, 0, Z) are as follows [27]: 

V.V = 0 (3) 

OV~ Pr 
~T---: + V.(V.Vi) = - V P +  ~aa (V21/i) + S i  (i = 1,2,3) 

(a)  

8 6 5  
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Figure 2. Time-variation of temperature as imposed on the 
disk No.1 during the heating process. 

DT + V . ( V . T ) =  P r  (V2T) (5) 
D~* Maa 

where V = (Vr,Vo,Vz) is the velocity vector; T* is the 
non-dimensional time; $1, $2 and $3 are the velocities- 
related stress terms given by: 

• fo r  i = 1, t h e  r a d i a l  d i r e c t i o n :  

W Pr ,v~ 2 Dvo $1 R M a  (--n 2 + R ---~ D~ -) (6) 

• fo r  i = 2, t h e  c i r c u m f e r e n t i a l  d i r e c t i o n :  

P r  2 DV~ Ve V~Vo 
s2 = ~ a  (-~ Do -~ ) n (7) 

• f o r  i = 3 ,  t h e  a x i a l  d i r e c t i o n :  

S3 = 0 (8) 

and M a  and P r  are, respectively, the Marangoni number 
and the Prandtl  number, given by: 

M a  - 7 A T  H (9) 
# a  

5 '  

P r  = -- (10) 
C L  

The thermocapillary Reynolds number defined as 
Re = M a / P r  has often been introduced to characterize 
the circulation of the fluid due to the thermocapillary 
effect. 

2.2 B o u n d a r y  a n d  in i t ia l  c o n d i t i o n s  

The governing equations (3 5) constitute a set of 
non-linear and strongly coupled equations, and must be 

8 6 6  

appropriately solved subject to the following boundary 
and initial conditions: 

on both disks, the usual non-slip and non-penetration 
conditions prevail; the disk No. 2 is held at constant 
temperature 7'2 = 0, while 7'1 varies with time r* 
according to an a priori known function (see for example, 
figure 2); 

the free surface, as stated previously, is considered 
thermally insulated and perfectly cylindrical; further- 
more, the equations expressing the equilibrium of the 
shear stress in the axial and tangential directions must 
also be satisfied. The resulting boundary conditions are 
as follows: at R = A = Ro/H:  

V~ = 0 ( l la)  

DV~ DT 
D R -  D Z  (l lb)  

1 D T _  (DVe Ve~ 
(11c) 

A De \ DR A ] 
DT 
DR = 0 ( l ld)  

- as initial conditions, we assume that  at the beginning 
of the heating process, i.e. at ~-* = 0, the fluid is at 
rest and has a uniform temperature equal to its melting 
temperature tM. 

From the governing equations (3-5) and their 
boundary conditions, one can see that  the problem 
under consideration is characterized by a set of 
three dimensionless parameters, namely the Marangoni 
number Ma,  the Prandtl  number P r  and the aspect 
ratio A. 

3. N U M E R I C A L  M E T H O D  
A N D  V A L I D A T I O N  

The system of governing equations (3 5), subject 
to the specified boundary and initial conditions, has 
been successfully solved by employing the modified- 
SIMPLE method [28, 29]. In this method, which is based 
on the finite control volume approach, the governing 
equations are first integrated over a finite volume by 
assuming that  heat, mass and momentum fluxes are 
uniform through any interface of the volume. The 
exponential scheme has been used throughout for the 
treatment of the combined convection and diffusion 
fluxes resulting from the transport  process. For the 
transient problem which is under study here, the time- 
fully-implicit scheme has been employed throughout. 
Staggered grids have been used with the velocity 
components calculated at the six interfaces, while the 
pressure and other scalar quantities such as temperature 
and species concentration are computed at the center 
of the control-volume considered. The result of the 
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above integration process consists of a set of algebraic 
discretized equations which have been successfully 
solved by using the "line-by-line" technique with the 
aid of a standard TDMA (i.e. Three-Diagonal Matrix 
Algorithm). The numerical solution is sequential i.e 
one variable at a time. A special "pressure-correction" 
equation has been derived by a judicious combination 
of the discretized Navier-Stokes equations and the 
integrated continuity equation. This pressure-correction 
equation is then employed to determine the pressure 
field as well as to correct the velocities field in order to 
progressively, i.e. iteratively, satisfy all the discretized 
equations. 

3.1. Grid and validation 

In order to ensure the consistency as well as the 
precision of numerical results, several non-uniform 
grids have been submitted to a "two-part" testing 
procedure. First, with a fixed number of nodes along the 
e-direction, we have simulated the particular case of the 
axisymmetrical thermocapillary convection in a NaNO3 
half-zone with M a  = 10 000, A = 0.732 and Pr  = 8.9 
by varying the number of nodes in the radial and 
axial directions. Results in table Ia show that  the grid 
26(R) × 26(Z) seems to be quite appropriate for the task 
demanded, since the relative error between grids does 
not exceed ~ 4 %. In the second part of the testing, 
with this 26 × 26 grid in hand, the fully 3-D case 
of thermocapillary convection in a cylindrical half-zone 
(Ma = 10 000, A = 0.732 and Pr  = 8.9) has been carried 
out, by imposing "ad-hoc" non-symmetrical thermal 
boundary conditions. Results in table Ib confirm that  
24 grid points in the e-direction appear to be largely 
sufficient to ensure the precision of numerical results. 
Consequently, the 26(R) × 26(Z) × 24(e) non-uniform grid 
has been adopted for M1 the simulations performed in 

TABLE I 
Results on different grids for NaNO3. 

(a) in the r - Z  plane 

Grid Nr × Nz Vzmax at free surface 

24 × 24 0.082528 

26 × 26 0.086641 

28 x 28 0.090496 

36 × 36 0.089304 

42 × 40 0.090306 

(b) In the e direction 

26 (Nr) x 26 (Nz) x No Vzmax 

20 0.026479 

24 0.026288 

28 0.026216 

this study. Because of the high value of the Marangoni 
number considered for the above tests, we are quite 
confident that  the chosen grid will be satisfactory for 
the entire range of Ma that  will be studied in transient 
cases. 

1 0 0 0  . . . . . .  ~ . . . . . . .  I . . . . . . .  ~ . . . . . . .  1 . . . . . . . .  i . . . . . .  

Re= = O. 106 Ma 
100 . . . . . .  Re== 0.311 Ma ~ o....=... 

........... Re== 0.470 Ma =~ ~o:::~-" 
10 x Silicon Off .... ;~" 

0 NaNO, ....:&~" 

T/ 
0.1 ~ O k a n o  et al.(1989) 

o.oi 

/ . . . . . . . . . . . . . . . . . . . . . . . . .  (a) 
OOl o.1 1 Ma/1L~Pr loo looo 1oooo 

z . . . .  I . . . .  i . . . .  = . . . .  

(crrVs) 
4.0 X Numeflcal Solution (Saghlr et al. 1990) . 

O Numerical Solulion 

3 0  NaNO3y~"~"1 
2.0 

1 . 0  ~ A = 0.'/32 

o . o  . . . . . . . . . . . . . . . . .  

0 5 10 15 20 
AT(K) 

1.0 . . . .  ! . . . .  i . . . .  i ' ' ' 

S i l i c o n O i l  m=~1-/.5 ' ¢ ~ w  

' - f d  

0 8 A -- 1.875 O O ( : ~ /  

1 0 0 0 ~  

T°6o.4 ~ (c)  

0 2 
IK. O Exp. (8aghir et al. 1992) 0. 2 

0 1 1 Numerical Solution 
2 Numerical Solution (Saghir et al.', 

O.Oq . . . . .  ' . . . . . . . . .  ' . . . .  
0.0( 0.25 0.50 0.75 1.O0 

Z 

Figure 3. Comparison wi th other  numerical and exper imenta l  
data for  (a), (b) the f luid circulat ion on the free surface, and 
(c) the f luid temperature profi le on the free surface. 
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The computer  code was then extensively val idated 
by comparing calculated results with available da t a  in 
the l i terature.  Firs t ,  a comparison has been performed 
for the fluid axial velocity on the free surface with 
the  corresponding empirical  correlations by Okano et 
al. [30] (figure 3a), noting tha t  the Reynolds number 
Rezs is defined as Rezs = Ma Vzmax/2 Pr, where Vzmax 
is the maximum fluid circulation on the free surface. 
The agreement can be qualified as quite acceptable.  
Good agreement has also been found between this 
maximum axial velocity obta ined for NaNO3 (Pr = 8.9) 
and the corresponding numerical  results from a 2- 
D axisymmetr ica l  model  by Saghir and Rosenblat  
[311 (figure 3b). We have also a t t empted  to validate 
the mathemat ica l  model  under t ransient  conditions. 
Figure 3c shows the comparison between numerical  
results  obta ined for a 2D-axisymmetr ieal  half-zone of 
Silicone oil (Pr = 196.5) under t ransient  regime/1-g 
condit ions and the corresponding experimentM da t a  as 
well as numerical  results by Saghir et al. [32]. Note 
tha t  in this  case, the deformable free surface has been 
taken into consideration. In spite of the experimental  
uncertaint ies  regarding the measurement  of t empera tu re  
on the free surface, the agreement can be, once again, 
qualified as quite acceptable.  

3.2. Other  details regarding the numeri- 
cal method 

For all the  numerical  simulations performed in this 
work, a t ime step A r  as small  as 1/50 s has been 
employed while s tudying the oscil latory flow regime. At 
the beginning of the heat ing process, larger AT, say 
AT = 1/20 s, has been imposed in the t ime interval 
where no oscillations were expected.  As convergence 
indicator  at  every t ime step, we used the "residual 
mass" which is resulting from the integrat ion of the 
continuity equation (3) over a finite control-volume. 
Converged solutions were usually achieved with a very 
low value of this residual mass, i.e. a maximum of 
0 .001% on the local basis. Under-re laxat ion factors 
ranging from 0.2 to 0.4 have been found to be quite 
appropr ia te ,  and no convergence difficulties have been 
experienced. In order to reduce the computing t ime 
while t racing the solutions corresponding to increasing 
values of the Marangoni  number,  an available converged 
solution obtained for a lower value of Ma was used as 
the  initial  conditions, and the flow has been simulated 
t ime-dependent ly  until  it has been judged to be either 
s teady or periodic. 

4. OSCILLATORY BEHAVIOR 
OF A MODERATE PRANDTL NUMBER 
FLUID (NaNOa, Pr = 8.9) 

The mathemat ica l  model  as well as the computer  
code have been successfully val idated and hence were 
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TABLE II 
Summary of cases simulated for NaNO3 

and heating disk No. 

Case Temperature 
profile 

I (1, 2, 3) 

iI (3, 4, 5) 

III (5, 6, 7) 

IV (7, 8, 9) 

V (9, 10, 11) 

VI (Ta, b, bb) 

VII (b, e, d) 

1 (A = 0.732) as specified in figure 2 

dr1/dT Ma* Nature 
(K.min- 1 ) of the flow 

10 7 500 axisymmetrical 

30 9 000 axisymmetrical 

30 10 500 axisymmetrical 

40 12 500 oscillatory 

30 15 000 oscillatory 

40 12 000 axisymmetrical 

5 12 500 oscillatory 

Values of ]Via corres )ond to A T  of each step. 

used with confidence to s tudy the transient  behavior 
of a fluid zone. As a moderate  Prand t l  number 
fluid, NaNO3 liquid with Pr = 8.9 has been selected 
because of available experimental  da t a  related to the 
axisymmetr ical-osci l la tory transit ion.  Figure 2 shows 
the t ime evolution imposed on the heated disk (i.e. 
disk no. 1) and table H summarizes details regarding 
the cases tested. Note tha t  at the beginning of the 
heating process, i.e. at point 1 in figure 2, all the fluid 
zone is assumed to be at the melting tempera ture  
tM = 306.8 °C. 

4.1. The basic state 

The structure of the flow has been carefully scruti- 
nized at  regular intervals during the heating process, 
and this for all the cases considered. It has been clearly 
established tha t  for the cases I, II, I I I  and VI of table II, 
tha t  is for Ma <<. 12 000, the flow and the thermal  fields 
remain perfectly s teady and axisymmetr ical  (figure 4). 
The flow basic s ta te  consists of an usual toroidal  struc- 
ture with its vortex center located near the free surface 
close to the hot disk. One may notice the evident ac- 
t ion of the thermocapi l lary  effects on the free surface 
where a strong fluid circulation has been fomld. The 
re turn  flow passes through the central region and car- 
ries lower t empera ture  fluid away from tile cold disk. 
The intensity of this thermocapi l lary- induced motion 
has been found to increase considerably with the in- 
crease of the Marangoni  number. Such behavior is well 
known and consistent with experimental  observations 
(see for example,  Preisser et al. [3]). It is due to the fact 
tha t  increasing Ma, or the tempera ture  difference AT 
between the disks, results in an increase of the temper-  
a ture  gradient  along the free surface and, consequently, 
to a corresponding increase of the thermocapi l lary  flow. 
The basic s ta te  of the thermal  field consists of perfectly 
circular and concentric isotherms in a plane normal to 
the main axis of the zone. 
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Figure 4. Axisymmetrical flow structure and thermal field 
(NaNO3, Ma = 7 500, A = 0.732). 

4 .2 .  T h e  t r a n s i t i o n  t o  t h e  o s c i l l a t o r y  
s t a t e  

For sufficiently high Marangoni  number,  case IV 
with Ma = 12 500 for example (figure 5), it is clearly 
establ ished tha t  the above s teady axisymmetr ical  
basic s ta te  is destroyed, and the flow gradual ly  
becomes three-dimensional  and oscil latory with time. 
Note tha t  the  value Ma = 12500 is in fact the 
critical Marangoni  number corresponding to tha t  
axisymmetr ica l /osc i l la tory  transi t ion.  We will call it 
hereafter "the upper  crit ical Marangoni  number" or 
MaYr. For the case IV, shown in figure 5, one can observe 
tha t  immedia te ly  after the onset of the oscillations, 
the ampl i tude  of the  oscillations remains relatively 
weak. In fact, except for the  existence of a non-zero 
circumferential  velocity component  - in par t icular  in 
the  vicinity of the free surface the loss of the flow 
symmet ry  remains almost impercept ible  at  this early 
stage. However, with further increase in t ime and under 
the constant  value of A T  imposed between disks, these 
oscillations grow steadi ly and become fully developed 
while per turb ing  considerably the entire flow field. One 
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Figure 5, Time-evolution of fluid temperature for various 
particular points located on the free surface (case IV). 

can notice the obviously uns teady and spat ia l  character  
of these dis turbances (figure 5). Thus, the  t empera tu re  
at  a fixed point  in space varies periodical ly with t ime 
around a certain average-value which is d ic ta ted  by the 
local mean thermal  field prevailing within the zone. 
As shown in subsequent sections, these t empera tu re  
dis turbances are also periodic with respect to the 
circumferential  position. For instance, one may notice 
from figure 5 tha t  the ampl i tude  of oscillations appears  
to be more pronounced near  the heated disk. Thus, 
the peak- to-peak ampl i tude  observed is approximate ly  
0.57 K, 0.83 K and 1.03 K respectively for the planes 
Z = 0.1, 0.5 and 0.85. The frequency of the oscillations 
has been es t imated to be f0 = 0.4 Hz by using a F F T  
technique. 

The above dynamical  behaviors as well as the three- 
dimensional flow structure  may be be t te r  unders tood 
by scrutinizing figure 6 which shows the instantaneous 
flow pa t t e rn  obtained for case IV in four par t icular  
R - Z  planes. The coordinates of the vortex center have 
also been provided for discussion purpose. I t  is very 
interesting to observe tha t  al though the toroidal  flow 
structure  is still present,  its vortex center as well as 

8 6 9  
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Figure 6, Instantaneous structure 
planes for the case IV. 
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of  the f low in four  R - Z  

the velocity field in the bulk liquid zone change notably  
from one plane to another.  In part icular ,  the shift of the 
vortex center has been found to be quite appreciable 
along the axial direction. Thus, it is shifting from tile 
posi t ion (Z* = 0.74, R* = 0.60) at  the angular  location 
0 = 0 ° to (0.69, 0.58), and (0.62, 0.57) and (0.72, 0.59) 
respectively for 0 = 45 °, 90 °, and 135 °. The views for 
the angular  locations 0 = 0 ° (figure 6a) and 0 = 90 ° 
(figure 6c) correspond approximate ly  to the extreme 
posit ions of the vortex center. One can observe tha t  
associated with the above shift of the vortex center, the 
entire flow field also changes drast ical ly  with respect 
to the circumferential  direction, in par t icular  in the 
region beside the hot disk where the vortex center is 
confined. This explains the high ampl i tude  of the fluid 
t empera tu re  oscillations observed in tha t  region (see 
again, figure 5) 

This s tr iking 3-dimensional toroidal  s t ructure  also 
changes periodical ly with time. Figure 7 shows the 
instantaneous posit ions of the  vortex center in the 
R - 0  and R - Z  planes for two different instants ~- 
and T + TO/2(T0 = 1/fo is the per iod of the  oscillations). 
Al though the variat ion in the  posit ion of the vortex 
center appears  to be small  for the fluid considered, 
these results i l lustrate eloquently the dynamic effects 
due to the  oscillations on the flow field. One can see 
clearly from figure 7c tha t  for a fixed time, the ring 
of vortex centers exhibits  a symmetr ical  "saddle-like- 
shape",  where its extreme shifts with respect to the 
axial  direction may be noticed. In the R-O plane, the 
project ion of this vortex center ring follows a slightly 
elongated ellipse (figure 7a). This ring is also t ime- 
dependent  as the entire t empera tu re  and velocity fields 
"rotate" around the circumference. 

Z 
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&66 
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. . . . . .  '~ +'r, o12  

i . . . .  i . . . .  i , 

-0.5 0.0 0.5 

r 

Z 
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Figure 7. (a, b) Instantaneous posit ions o f  the vortex center 
for two dif ferent instants ~- and ~ - +  TO/2 (case IV), and (c) 
Illustrative view of  the pathway of  the vortex center (not to 
scale). 

Figures 8 and 9 show respectively, instantaneous 
views of the velocity field and isotherms as obtained 
for the case IV at the cross-section Z = 0.5 (note 
tha t  these views correspond in fact to four different 
instants T, 7- + 70/4, T + 7o/2 and 7- + 3 TO~4 during one 
oscillation cycle). We can obviously notice the ra ther  
complex behaviors of the flow and the thermal  field~. 
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Y (a) x (b) 

Y 

Figure 8. Instantaneous structure of  the veloci ty field in the 
r - -O  plane at Z = 0.5 (case IV) for four dif ferent times during 
one cycle. 

8 0671 
7 0577 
6 0484 
9 O39] 
4 0297 
3 0.204 

. . . .  

'-~.,(c) ~ oo~7 

Figure 9. Instantaneous structure of  the thermal field in the 
r--O plane at Z = 0.5 (case IV) for four different t imes during 
one cycle. 

Thus, for a fixed t ime, say at  ~- (figures 8a and 9a), 
the  t ransversal  velocities are more pronounced in a 
large region around the line X - X  while along the 
line Y - Y ,  fluid circulation is drast ical ly  reduced. One 
may observe tha t  in general, the fluid circulation on 
the free surface is more impor tant .  Furthermore,  the 
region of high velocities i.e. the region along the axis 
X - X ,  is located at the junct ion of the two merging fluid 
s t reams moving radial ly  away from the free surface. The 
coherent picture of the  flow organizat ion within the zone 
appears  to be quite complex. I t  is observed tha t  the fluid 
flow on the free surface is no longer purely axial, but  
clearly exhibits  strong circumferential  deviations. At  the 
locations marked "Y", fluid coming axially from the hot 
disk splits into two streams while directing towards the 
cold disk. On the other  hand, at  locations marked "X",  a 
merging of the two other deviated s treams occurs. In the  
central region of the cross section, the  re turn  fluid from 
the cold end is also submi t ted  to such circumferential  
deviation. W i t h  regard to the s t ructure  of isotherms in 
the Z = 0.5 plane, one can obviously observe tha t  they 

are no longer circular as for the axisymmetr ical  case (see 
again, figure 4), but  are now drast ical ly  dis tor ted into 
an elongated shape which remains symmetr ica l  with 
respect to the singular point.  One may also notice the 
existence of the a l ternate  hot and cold regions on the free 
surface. By scrutinizing figures 8a and 9a for example,  
it  can be observed tha t  along the tangent ia l  direction 
on the free surface, fluid pulls away from a hot region 
and flows to the cold one, thus obeying to the well- 
known thermocapi l lary  law. These a l ternate  hot and 
cold regions, as well as the entire flow fields, exhibit  a 
"rotat ing character" circumferentially around the main 
axis of the zone. Thus, the same flow and thermal  fields 
are repeated exact ly some t ime later at  another  angular  
position, creat ing the striking oscil latory effect in t ime 
as previously seen in figure 5. 

The above detai led descript ion of the flow field 
(see in part icular ,  figures 6 and 7) indicates tha t  we 
have present the  second mode of instabi l i ty  according 
to the  classification by Preisser et al. [3] and by 
Chun [33]. Note tha t  this mode of instability, often 
referred as the "symmetrical  mode",  is characterized by 
a synchronous pulsat ion of a toroidal  flow structure;  
while the first mode or the "asymmetr ical  mode" is 
represented by a ro ta t ing inclined torus with respect to 
the  main axis. From observations performed on ear th  
for NaNO3, Preisser et al. [3] have found tha t  the first 
and second modes exist, respectively, for A ~< 0.77 and 
1.43 >~ A ~> 0.71 (including t ransi t ional  zones). The  
aspect  rat io considered her% A = 0.732 falls within a 
t ransi t ional  zone where both  modes may exist as well. 

In order to ascertain the oscil latory s tate  observed in 
case IV as well as the value of the crit ical Marangoni  
number Mac v (Mac U ~. 12 500 for the  aspect  rat io A = 
0.732 considered here), the case VII  has been simulated 
using as an initial  conditions, the axisymmetr ica l  flow 
field corresponding to the case Ma = 12 000 (point b in 
figure 2), with a smoother  t empera tu re  ramping-ra te  on 
disk No. 1, say dtl/dT -- 5 K-min -1. Figure 10 shows 
the t ime-evolution of the  t empera tu re  as obta ined for 
the  same point  located on the free surface. I t  can be 
observed tha t  the crit ical Marangoni  number  at which 
the t ransi t ion to oscillations occurs does not seem to 

t -  t . (K)  

18.0 

17.0 

n 

16.0 

Ma = 12500 

15.0 
, , , t . . . .  t , , , , i , , , 

20o 22s 2so ,~ ($) 

F i g u r e  1 0 .  Time-evolution of the temperature of a particular 
point located on the free surface for cases IV and VII. 
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Figure 1 1. Time-evolution of the temperature of three partic- 
ular points located on the free surface (case V). 

vary with the values of d t l /d~-  imposed. For a lower 
ramping- ra te  as in case VII,  only a small delay in 
t ime was detected for the onset of oscillations. Such 
behavior  appears  to be consistent with exper imental  
observations by Schwabe and Scharmann [26, 34] as 
shown later  in section 4.4. Also, the  fully developed 
oscil latory flow structure,  a l though being both  t ime- and 
space-dependent ,  seems to have common characterist ics 
which are proper  to the  level of the Marangoni  
number  considered (for given values of Pr and A) 
and independent  with respect to the t ime-his tory of 
the  flow. Thus, for example,  both  t empera tu re  profiles 
shown in figure 10 have identical  frequency (0.4 Hz) as 
well as t ime-average value (324.53 °C) when the fully- 
developed oscil latory s ta te  is reached. The identical 
value of the averaged tempera tures  indicates eloquently 
tha t  the  "mean" flow, i.e. the  one corresponding to 
the equil ibrium state,  is the same for the two cases 
considered, a fact which appears  to be physically quite 
realistic. The deviat ions from tha t  equil ibrium state  due 
to the  instabi l i ty  may be different however, depending 
upon how the dis turbances grow within the zone. 

Finally, it has also been observed tha t  for higher 
Marangoni  numbers,  say Ma = 15000 (case V), the 
effects due to the instabi l i ty  on the flow and thermal  
field become more pronounced. For example,  the peak- 
to-peak ampl i tude  of t empera tu re  oscillations for the 
three par t icular  points  on the free surface at  Z = 0.5 is 
approximate ly  1.75 K under fully-developed oscil latory 
conditions (figure ii). It  is very interest ing to observe 

T 
9 0 765 
8 0672 
7 0579 
6 O485 
5 0392 
4 0299 
3 0 206 
2 0112 
1 0019 

TABLE tll 
Instantaneous positions of the vortex center 

in four different R - Z  planes (case V). 

0 0 ° 45 ° 90 ° 135 ° 

Z* 0.77 0.73 0.62 0.59 

R* 0.61 0.59 0.57 0.58 

the s teady growth of the oscillations ampl i tude  during 
the heat ing-up of the zone (note tha t  the oscillations 
were already ini t iated within the zone since the initial 
conditions employed for case V correspond to the 
oscil latory s tate  with Ma ---- 12500). Another  point 
of par t icular  interest resides in the fact tha t  for case V 
(Ma = 1000), the effects of these oscillations on the 
flow and thermal  fields are definitely more pronounced 
than  those for case IV. Thus, one may observe from 
figure 12a tha t  isotherms become considerably more 
dis tor ted than  those shown previously in figure 9. Also, 
the circumferential  movement of the fluid in a R - 0  
plane is stronger, as it can be observed on figure 12b 
(note tha t  the same scale was used for figure I2b and 
figure 8). The same behavior may also be noticed from 
the isotherms s t ructure  on the free surface (figure 12c) 
compared to tha t  of the case Ma = 12 500 (shown later 
on figure 13). Table III finally shows tha t  for case V 
(Ma = 15 000), the circumferential  shift of tile vortex 
center, in par t icular  along the axial direction, appears  
to be more drast ic  in comparison with tha t  for case IV 
(see again figure 6). From the above results, it can 
be deduced tha t  the ampl i tude  of oscillations as well 
as their  effects on the flow and thermal  fields become 
more impor tan t  with higher Marangoni  number. Such 
behavior,  which is also consistent with tha t  observed 
exper imental ly  by Preisser et al. [3], will be bet ter  
explained in the next section where the physical model 
governing these oscillations wilt be discussed. 

4 . 3 .  O n  t h e  c a u s e  o f  t h e  o s c i l l a t i o n s  

From the earlier descript ion of the circumferential 
motion of the fluid on the free surface as well as 

Figure 12, Instantaneous structure of (a) isotherms and (b) transversal velocity field in 
on the free surface, for case V. 

, (c) 

T 
8 0.937 

A 0.812 

9 0.750 

8 0.687 

7 0670 

6 0.650 

5 O. 562 

4 0.437 

3 (~312 
2 (1187 

) 1 0062 

7 

the middle plane Z = 0.5,  and (c) isotherms 

8 7 2  



Numerical simulation of oscillatory Marangoni convective flow inside a cylindrical liquid zone 

e 
2~ [(a) o 

0 

0 
(b) o 

@ 

' 

1 Z Z 

0 (d) 

) 

Z 

Hot Side 

3- 

B 0.937 
A 0.812 
9 0.750 
8 0.687 
7 0.670 
6 0.650 
5 0.562 
4 O. 437 
3 0.312 
2 0.187 
1 0.062 

Z 

(o) 

Figure 13. Instantaneous structure of  (a-d) isotherms on the free surface for case IV at four different t imes during one 
cycle and (e) superposed isotherms and streamlines corresponding to frame "a". 

the rotating and oscillatory behavior of the flow and 
the thermal field, and in conjunction with the striking 
similarity that  exists between the time-variation of 
the fluid temperature (figure 5) and those observed 
by Preisser et al. [3], Savino and Monti [25] and also 
Schwabe and Scharmann [34], one can suggest that  the 
observed oscillations are periodic in both space and time 
and of a thermal nature. Furthermore, these oscillations 
are believed to be the effects of the so-called "thermal 
traveling waves". In order to better explain this point, 
we have studied carefully the fluid thermal behavior on 
the free surface. Figure 13(a-d) shows the instantaneous 
snapshots of the isotherms structure on the free surface 
for the case IV (Ma = 12 500) considered earlier. Note 
that  these views correspond to four different times 
during one cycle. We can clearly observe that  in the 
region close to the disks, the isotherms remain nearly 
parallel. However, in the large central region of the 
free surface, isotherms are drastically distorted into the 
form of a sinusoidal curve in the tangential direction, 
creating alternate hot and cold spots at any given axial 
position. This results in a non-zero temperature gradient 
along the circumference. Therefore, the thermocapillary 
surface flow is no longer "purely axial", but follows 
a curved pattern, as it can be clearly observed in 
figure 13e (this figure corresponds exactly to the same 
instant as that  of frame "a"). We should note here that  
the fluid circulation on the free surface always obeys 
the thermocapillary law, i.e. fluid flows from a hot 
area towards a cold one. Furthermore, the periodicity 
both in space and time of the curved isotherms is 
clearly observed (figure 13a d). As a result, the entire 
flow and thermal fields are dynamic and periodic in 
time. Thus, the above mentioned curved pattern of the 
fluid on the free surface also changes periodically with 
time, creating a rather complex flow structure in the 
bulk region (see again, figures 6 and 8). The flow is 
then associated with the corresponding rotation of the 
deformed toms around the main axis of the cylinder. It is 

very important  to mention here that  the instantaneous 
pat tern of the isotherms and the streamlines shown in 
figure 13e is qualitatively quite similar to that  observed 
experimentally by Schwabe and Scharmann [34] who, 
by careful measurements and observations performed on 
a NaNO3 float zone under normal gravity conditions, 
have clearly established the existence of the azimuthally 
traveling waves on the free surface of the liquid bridge. 

As we have seen, the flow instabilities observed so far 
are likely to be caused by the existence of the periodic 
traveling thermal disturbances on the free surface. Such 
temperature disturbances lead to a continuous change 
of the temperature gradient along the circumferential 
direction and consequently, to a perturbation of the 
surface tension gradient. This results in some distortion 
of the velocity field which, in turn, is responsible for 
a drastic modification of the entire thermal field. Such 
a coupling between the surface tension effect and the 
heat transfer may lead to a growth or to a damping 
of the initial temperature disturbances. The formidable 
task is to determine the necessary conditions for which 
an amplification of an initial temperature disturbance 
would occur leading to a full establishment of the 
instability. According to Chun [2, 33] and Schwabe 
[1, 26, 34], the growth or the decay of a temperature 
disturbance on the free surface depends mainly on 
the relative importance between the thermocapillary 
convection effects and those of the diffusion i.e. on 
the order of magnitude of the Marangoni number 
itself. When the latter becomes sufficiently large, say 
Ma >~ Mayr .~ 12 500 for the aspect ratio considered 
here, i.e. when the driving temperature difference 
exceeds a certain critical limit, an amplification of 
an initial temperature disturbance may occur since 
the beneficial damping effect due to the diffusion 
process (of heat and/or  momentum) would become 
insufficient compared to the destabilizing effect caused 
by convection. Hence, the flow under a higher Marangoni 
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TABLE IV 
Comparison with other experimental and numerical data for NaNO3. 

(1) (2) (3) (4) (5) 
P-g # 4  #-g  1-g # g 1-g 

Macr 12 500 11 633 9 444 4- 250 8 907 4- 150 ~ 9 000 ~ 8 000 

Frequency (Hz) 0.4 0.56 0.48 0.51 0.5 0.57 

dtl/dT 40.5 N/A 0.21 0.21 6 0.1 

K.min -1 

(1) Numerical results (Pr = 8.9) 

(2) Numerical results from Rupp et al. [21]. 

(3) Experimental data from Schwabe and Scharmann [26]. 

(4) Experimental data (Pr = 9.2) from Schwabe and Scharman [34]. 

(5) Experimental data from Preisser, Schwabe and Scharmann [3]. 

N/A : not available. 

number  would, in general, be much more vulnerable with 
regard to the  amplification of a disturbance.  One can 
then expect  tha t  the effects due to the instabi l i ty  on 
the flow would become more impor tant ,  as confirmed 
by the results for case V (figures 11 and 12). The above 
explanat ion regarding the onset of the oscillations based 
on the relative s t rength of the convection effects with 
respect  to those of the diffusion process is somewhat 
analogue to  tha t  of the l amina r / tu rbu len t  t ransi t ion of 
a flow within a tube  for which the forcing parameter  is 
the flow Reynolds number.  

4.4.  C o m p a r i s o n  w i t h  o t h e r  e x p e r i m e n -  
ta l  a n d  n u m e r i c a l  d a t a  

Table IV compares the crit ical Marangoni  number 
and the oscillations frequency for NaNO3 calculated 
in this  paper  with exper imental  and numerical  da t a  
available in the l i terature.  I t  is very interest ing to 
observe tha t  the frequency of the oscillations has been 
found to agree very well with the corresponding # - g  
experimental data from Schwabe and Scharmann [26] 
as well as with numerical results from Rupp et al. 
[21]. One can notice however the notable difference 
between our values obtained for Mac U and those 
measured experimentally under ~-g environment. Such 
a difference may be attributed to several reasons. 
It should be noted, first, that there exists a major 
difference in the determination of the critical Marangoni 
number. In this study, Mac U corresponds in fact 
to the specific "steady-state" case where oscillations 
were detected through the tracing process. In various 
papers which reported experimental data related to 
the axisymmetrie/oscillatory transition, such as those 
by Preisser et al. [3] and Schwabe and Scharnmnn 

[26], MaVr has been determined by employing a 
certain "extrapolat ion procedure" of the ampl i tude  
of oscillations with respect to the parameter  Ma. 
Thus, the critical Marangoni  number  corresponds 
to a point  where the ampl i tude  is nearly zero. 
Also, it should be noted here that  during these 
experiments,  the ampl i tude  of oscillations has been 
measured "unsteadily",  i.e. while the heated disk 
t empera tu re  was on the rise. Secondly, in most cases, 
exper imental  opera t ing  conditions may not ensure 
to ta l ly  the symmetr ic  thermal  boundary  conditions. 
Therefore, the t ransi t ion to a non-axisymmetr ical  tiIne- 
dependent  flow may occur at lower values of the 
Marangoni  number,  as noted by Rupp et al. [21]. 
Also, the propert ies  of the  melt ing substances used are, 
unfortunately,  not known very accurately. The resulting 
discrepancy between the predicted and measured values 
of propert ies  is often appreciable,  ~ 20 % according 
to the same authors.  On the other  hand, as s ta ted  
previously, the presence of a deformable free surface 
may certainly create an aiding effect to the growth of 
a dis turbance on tha t  surface [4]. Such influence due 
to the deformation of the free surface may explain the 
lower crit ical Marangoni  numbers generally observed 
on the Ear th  (table IV). Finally, with regard to the 
influence of the heating ramping-ra te  dtl/d~- on the 
onset of the oscillations~ it appears  tha t  the numerical 
results are also quite consistent with experimental  
observations. As s ta ted  previously, the occurrence of 
the axisymmetr ica l /osc i l la tory  t ransi t ion does not seem 
to vary significantly with respect to the value of 
dtl/d~- imposed. This behavior can be confirmed by 
da t a  from Schwabe and Scharmann [26, 34] shown 
in table IV, where relatively close values of the critical 
Marangoni  numbers were obtained exper imental ly  while 
using values of dtl/dT as different as 0.21 K.min -1 and 
6 K.min -1. 
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4.5. The transition from the oscillatory 
to the axisymmetrical state/the 
phenomenon of hysteresis 

In the  present work, we were also interested in 
s tudying the reverse trend,  i.e. the  t ransi t ion from 
the oscil latory to the axisymmetr ical  state,  which could 
occur normal ly  during the cooling of the hot disk. 
Our s tudy was mainly  mot ivated  by the existence of 
the  hysteresis phenomenon associated with this  reverse 
t ransi t ion which has been observed exper imental ly  by 
Schwabe and Scharmann [26] while working on a NaNO3 
float zone. 

Figure 14 shows the two different t ime evolutions of 
the  t empera tu re  t l  (T) used for the cooling of the hot 
disk. Note tha t  the same values of Idtx/dTI employed 
before for the heat ing process were imposed here. I t  
is also impor tan t  to mention tha t  both  t empera tu re  
profiles begin at the  same point  ' T ' ,  which corresponds 
in fact to the case Ma = 12 500, A = 0.732. Calculat ions 

t,(°c) 
340 

335 

330 

, . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . 

NaNO~ 

2 ~ 4  5 
325 d e ~ f  g ~ 6  

320 ~ h  i 

i . . . .  i . . . .  i . . . .  , . . . .  J . . . .  i . . 

240 250 260 270 280 290 
"c (s) 

Figure 14. Temperature profiles of the disk no. 1 during the 
cooling process. 

TABLE V 
Summary of cases simulated for NaNO3 and cooling 

disk no. 1 (A = 0.732) as specified in figure 14. 

Case 

A 

B 

C 

D 

E 

F 

G 

Temperature dt l /dT 
profile (K.min- 1 ) 

(1 2-3) -~5 

(3-4 5) -15 

(5-6-7) -15 

(g-h-i) 

(1-b-c) -40 

(c-d-e) 30 

(e - /g )  -30 

-30 

Ma * Nature 
of the flow 

10 500 Oscillatory 

9 000 Oscillatory 

7 500 Axisymmetrical 

10 500 Oscillatory 

9 000 Oscillatory 

7 500 Oscillatory 

6 000 Axisymmetrical 

* Values of M a  correspond to A T  of each step 

TABLE Vl 
Peak-to-peak amplitude for NaNO3 

and two different ways of cooling disk No. 1. 

Ma = 12 500 Initial conditions 
Peak-to-peak amplitude = 0.83 K 

Peak-to-peak amplitude (K)  Case Case 

A 

B 

C 

0.52 0.45 

0.10 0.26 

Axisym. 0.11 
n 0  

Axisym. 
~ 0  

D 

E 

F 

G 

Ma 

10 500 

9 000 

7 500 

6 000 

s tar t ing from this point, used as initial conditions 
the fully-developed oscil latory flow and thermal  fields 
described earlier. The s t ructure  of the flow as well as 
the t ime-evolution of t empera tu re  were carefully t raced 
and scrutinized for each of the  cases tested. Table V 
summarizes the cases tes ted and t raced and the nature  
of the flow as observed for these cases. 

Figures 15 and 16 show the t ime-evolution of the 
fluid t empera tu re  for three par t icular  points  located 
on the free surface and at Z = 0.5, respectively, as 
obta ined for the cases A, B and C (cooling pa t t e rn  
no. 1, dtl/d~- = - 1 5  K /min )  and the cases D, E, F and 
G (cooling pa t t e rn  No. 2, dtl/d'r = - 3 0  K-min-1) .  I t  can 
be observed tha t  with the decrease of the t empera ture  
difference A T  between the disks, the ampl i tude  of 
oscillations decreases progressively. For example,  the 
peak- to-peak ampl i tude  in K has decreased from 0.83 
to 0.52 and to 0.10 approximate ly  for Ma decreasing 
from 12 500 to 10 500, and to 9 000 while following the 
cooling pa t t e rn  No. 1. On the other hand, the ampl i tude  
is respectively, 0.83 K, 0.45 K and 0.26 K for the same 
values of Ma on the cooling pa t t e rn  No. 2. Note tha t  the 
oscillations frequency is always the same: f0 = 0.4 Hz 
for the aspect  ra t io  A = 0.732 considered here. At  
sufficiently low value of A T  or Ma, the t empera tu re  
oscillations vanish completely and the flow becomes, 
again, perfectly axisymmetr ical  which can be detected 
when the three t empera tu re  profiles become identical. 
I t  is very interest ing to observe tha t  this second 
critical Marangoni  number - hereafter  called "the lower 
critical Marangoni  number" or MaLr - corresponding 
to the osc i l la tory/axisymmetr ica l  t ransi t ion,  is very 
different from one cooling pa t t e rn  to another.  Thus, 
the oscil latory s tate  does no longer exists for the case 
C with Ma = MaLt = 7500 on pa t te rn  No. 1 while it 
still clearly persists for case F with the same value of 
Ma on pa t t e rn  No. 2. In fact, with the second cooling 
pat tern ,  a completely axisymmetr ical  flow s t ructure  has 
only been restored at Ma = MaLt = 6 000. Hence, the 
hysteresis phenomenon clearly exists within the range 
MaC >1 Ma ~ MaLr, where bo th  the  oscil latory and 
axisymmetr ical  s tates  may exist depending whether  we 
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F igure  1S. T ime-var ia t ion  o f  t e m p e r a t u r e  at  three part icular  points  located on the  free surface (cases A, B and C). 
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F i g u r e  16. T ime-var ia t ion  o f  t e m p e r a t u r e  at three part icular  points  located on the  free surface (cases D, E, F and G). 

heat  or cool the  disk No. 1. This numerical  predict ion of 
the  hysteresis phenomenon,  which is believed to be the  
first of its kind, has been found to be quite consistent 
wi th  the  only available exper imenta l  observations by 
Schwabe and Scharmann [26]. The following comparison 
can be made,  regarding the range of Ma where the 
hysteresis phenomenon is expected to occur: 

Exper imenta l  d a t a  from Schwabe and Scharmann 
[26] give: 

9 444/> Ma ~ 8 340, with dtl/dT = -0 .43  K.min -1 

Present  numerical  s tudy:  

12 500/> Ma ~> 7 500, with dtl/dT = - 1 5  K.min -1 

12 500 >~ Ma ~> 6 000, with dtl/d'r = - 3 0  K.min - I  

The  agreement  regarding the values obta ined  for 
the  lower cri t ical  Marangoni  number  MaL~ can be 
qualified as very good. Based on the t rend of the 
numerical  values for MaLr as function of dtl/d'r, it 
can be expected tha t  for further decrease of the lat ter ,  
the  corresponding value of MaL~ would approach 8 340, 
the  value determined experimentally.  

At  this  stage, two crucial questions of fundamental  
interest  in fluid mechanics must  be addressed. The first 

question concerns the  phenomenon of hysteresis itself, 
and the second one is related to the  existence of mult iple 
lower crit ical Mare~lgoni numbers associated with the 
oscil latory/axisyn-tmetrical  transit ion.  

The fascinating phenomenon of hysteresis observed 
here may be explained pr imari ly  by the inert ia  effect of 
the liquid zone. This effect, present in the transfer 
of both  heat  and momentum, results in a lag in 
the response-tirne of the thermal  and velocity fields 
corresponding to a change in the thermal  boundary  
conditions imposed on the zone. On the other hand, the 
non- linear nature  of the coupling between tempera tu re  
and velocities also contr ibutes to a rather  complex and 
dynamical  variat ion of the thermocapi l lary  convection 
effects as well as those of the diffusion. The combinat ion 
of these effects can affect great ly the growth or the 
decay of the thermal  dis turbances responsible of the 
oscil latory state.  It should be noted tha t  any decrease 
of the  driving-temperature-gra~iient along the axial 
direction will eventually lead to an el imination of the 
thermal  oscillations on the free surface and, hence, to 
a complete restorat ion of the axisymmetr ic  base-state.  
Such behavior can be explained by the increase of the 
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stabil izing effects due to viscosity relatively to those of 
the thermocapi l lary  convection, contrari ly to the t rend 
observed previously during the heat ing-up process where 
the drast ic  increase of the convection effects tends to 
destabil ize the flow. This rat io of the relative s t rength 
between the convection and the diffusion effects appears,  
however, more complicated during the cooling process 
in the  presence of an oscil latory flow within the zone. 
In fact, for a given value of A T  or Ma, it is observed 
tha t  oscillations decay more slowly with a higher ramp-  
rate  [dtl/d~-[. Such a behavior,  which appears  somewhat 
paradoxical ,  may be explained by the fact tha t  a rapid 
reduction of A T  means tha t  less t ime is allowed (to 
reach the same level of Ma) for the viscosity effects to 
overcome the per turba t ions  due to the a l ready existing 
oscillations. Time is therefore one of the crucial factors 
tha t  governs the re-establ ishment  of the axisymmetr ical  
flow. The above behavior also explains the existence of 
the mult iple values for MaLt obtained in this study. 

5. CONCLUSION 

In the present paper ,  the problem of the t ransi t ion 
from the axisymmetr ical  to the oscil latory flow which 
occurs inside a NaNO3 floating zone has been studied. 
An appropr ia te  numerical  model  has been developed 
which allows a direct 3-D and t ime-dependent  simula- 
t ion of the hydrodynamic  and thermal  fields within the 
zone opera t ing  under t t - g  conditions. The s t ructure  
and the nature  of the flow were carefully scrutinized 
at each of the  stages during the heat ing process. The 
numerical  results have revealed interesting behaviors 
which can be summarized as follows: 

- u n d e r  sufficiently low tempera tu re  differences be- 
tween the disks i.e. low Ma, say Ma < Mac v ~ 12 500, 
the flow remains perfectly s teady and axisymmetr ical  
and consists of a symmetr ical  torus  with its vortex 
center located near the free surface of the  zone; 

- when the Marangoni  number  increases beyond Macr,v 
the t ransi t ion from the above basic s ta te  to the 
oscil latory s tate  occurs; 

the crit ical Marangoni  number Mac v appears  to be 
insensitive with respect  to the ramping-rates  tested; 

- the oscil latory flow structure  consists of a ra ther  
complex pa t t e rn  with a l ternate  hot and cold zones, 
and high and low velocity gradient  regions on the 
free surface; the vortex center moves periodically along 
the radial  and axial directions as the entire flow and 
tempera tu re  fields are ro ta t ing around the main axis of 
the zone; 

it appears  tha t  the  instability, which is believed to 
be caused by azimuthal ly  traveling thermal  waves on 
the liquid free surface, is of the second mode i.e. the 
symmetr ical  mode. 

The phenomenon of hysteresis has also been s tudied 
by comparing the transient  behaviors of the zone during 
the heating and the cooling process. The following 
conclusions seem to be pert inent:  

- there is a certain interval of Ma, say MacV~ > Ma > 
Mac L, for which both  oscil latory and axisymmetr ical  
s ta tes  may exist depending whether  the zone is cooled 
or heated; 

the lower crit ical Marangoni  number  MaLcr is not 
unique and strongly depends on the cooling ramping- 
rate imposed; 

the value of MaLr has been found to increase with 
decreasing cooling ramping-rate;  
- the value of MaL~ is expected to be within the  interval 
(6 000, 7 500), based on the cases tested in this  study. 
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